
To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

Transaction Level Hierarchy Guided and Functional
Coverage Driven Deductive Formal Verification

Tobias Strauch
R&D

EDAptix e.K.
Munich, Germany

Email: tobias@edaptix.com

Abstract—We demonstrate how dynamic verification (e.g. sim-
ulation) can be replaced by deductive formal verification and
how to benefit from the advantages of symbolic verification and
the reuse of verification proofs. To do this, we swap the well-
known module-hierarchy based concept with a transaction-level
(TL) based alternative, which still allows us to describe the design
as precisely as on RTL. We enhance the aspect-oriented and TL
oriented language PDVL to support the definition of functional
coverage (FC) and assertions at all levels of a TL-hierarchy.

We then show how to use a deductive formal verification (DFV)
flow which compiles PDVL code into Gallina code to be used by
the Coq theorem prover. It can be argued that FC can be converted
into proof obligations and that proving them is equivalent to 100%
coverage. We also demonstrate how lower-level proofs can be
reused when verifying aspects at higher-levels of a TL-hierarchy.
We argue that the traditional assertion-based verification (ABV)
methodology is still supported and SVA can be proven using DFV.

Index Terms—Transaction level design and verification, deduc-
tive formal verification, coverage driven verification, ABV

I. INTRODUCTION

Verification can generally be divided into dynamic and static
verification methods. Dynamic methods such as simulation are
usually associated with a testbench (TB) that stimulates and
monitors the design behavior. If the guidelines of the Portable
Stimulus Specification (PSS) and the Universal Verification
Methodology (UVM) are followed, then the functional cover-
age (FC) is defined and checked within testbenches. SystemVer-
ilog Assertions (SVA) and their automatically derived coverage
are typically defined within the Design Under Verification
(DUV) and can be (dynamically) verified during simulation.
Alternatively, static verification methods such as an SMT solver
are used to statically verify SVA.

We exploit the aspect-oriented and transaction-level (TL) lan-
guage PDVL [1], which allows the definition of TL-hierarchies.
We associate FC and assertions with virtual transactions on
individual hierarchy levels. Then we convert the DUV and
verification code into Gallina [2] code to be used for deductive
formal verification (DFV). We argue that FC can be converted
into theorems and that proving them is equivalent to 100% FC.

In Section II FC as well as assertions and their coverage are
discussed. Our work is described in Section III. Then PDVL
is reintroduced briefly and the conversion to Gallina code is
outlined in Section V. TL-hierarchy guided and functional
coverage driven DFV is discussed in Section VI, followed by
the presentation that the traditional SVA based ABV approach

is also supported. The paper finishes with related work, results,
and the concluding Section IX.

II. FUNCTIONAL COVERAGE AND ASSERTIONS

Today, FC comes in two flavors in SystemVerilog. One type
of FC is sample-based coverage provided by a covergroup.
Covergroups record the number of occurrences of various
values specified as coverpoints. These coverpoints can be hier-
archically referenced by testcases and testbenches so that it can
be verified whether certain values or scenarios have occurred.
They also provide a means for creating cross coverage. Unlike
assertion-based cover properties, covergroups may be used in
both class-based objects or structural code.

The second type of FC is assertion based. Assertions became
very popular at a time when individual IP modules had to
be connected to an SoC. Despite the introduction of an SoC
module interconnect specification (e.g. AMBA from ARM),
IP providers wanted to ensure that the bus interface of their
encrypted IP block was functioning properly and was stimu-
lated correctly. Since then, assertion-based verification (ABV)
has gained greater acceptance and is now used for FC and the
definition of lower-level assertions of various design aspects.

Temporal logic is widely used in property checking based
formal verification as well as ABV. To express different types of
properties, a variety of temporal logics have been proposed. For
example, Linear-time Temporal Logic (LTL) is able to describe
a property along with a single execution. However, it lacks the
ability to express other possible executions and Computation
Tree Logic (CTL) is proposed to solve the problem. The
assertion definitions are used to (auto-)generate assertion-based
FC points.

The relevant type of coverage comes from a cover property,
which uses the same temporal syntax as defined by SVA. Since
cover properties use the same properties as asserts, the same
work in creating the properties can be reused in both checking
and coverage gathering. Cover properties are typically used
for protocol coverage since the temporal syntax is ideal for
describing sequences of events over time, such as those required
for bus interfaces.

However, cover properties can only be placed in structural
code (i.e., modules, programs, or interfaces) and cannot be used
in class-based objects. Likewise, their coverage information
is not easily accessible in SystemVerilog (SV) for use in a
testbench (e.g. steering stimulus generation).

1

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

Fig. 1. Comparing status quo and transaction-level-hierarchy guided and functional coverage driven deductive formal verification.

Fig. 1 shows that SVAs are defined at the module level
according to the current state of the art. Dynamic ABV can
be based on simulation, emulation or FPGA based prototyping.
All of them face the challenge of activating an assertion. When
dynamic ABV is combined with constraint random or directed
verification, the runtime can be very high to activate coverage
points of corner cases. HW-based dynamic ABV solutions
have the problem of collecting relevant assertion coverage
data. Static ABV uses predominantly SMT solver to verify the
correctness of assertions.

III. OUR WORK

Our work enables the definition of FC and assertions from the
lower-level up to the system-level and supports their coverage-
driven DFV. It is set in contrast to the status quo in Fig. 1.

1) Adding relevant language constructs to PDVL: PDVL is
an aspect-oriented and transaction-level Programming Design
and Verification Language, which itself adds language con-
structs on top of SystemVerilog (SV).

In our work we demonstrate further improvements to PDVL
to enable DFV from lower-level up to the system-level. We refer
to code that asserts expected behavior as virtual transactions
(VTRs) in PDVL. VTRs are not meant to be synthesizable
unless explicitly specified.

2) Defining FC and assertions from lower-level up to system-
level: When using SV, system-level coverage points can be
defined to capture complex system behavior. To make optimal
use of this possibility and to support a certain level of reuse,
the UVM and the PSS were defined. Using SVA at the system
level to assert complex system behavior remains challenging.

In our work we demonstrate the use of VTRs that can
bundle a set of less complex VTRs. This allows the definition
of a hierarchy of VTRs which asserts behavior from system-
level all the way down to lower-level. Higher-level VTRs can
therefore also assert system behavior that spans over DUV and
TB behavior alike. This reusable TL-hierarchy based on VTRs
seamlessly fills the gap which exists between lower-level SVA
and the expected behavior defined by the UVM.

3) Verifying FC and assertions from lower-level up to
system-level: System-level coverage is primarily captured using
simulation techniques. As symbolic simulation is still lim-
ited, many simulation runs must be executed by directed or
constraint random tests. Additionally, the possibility to reuse
verification throughout the module hierarchy is limited. Veri-
fying system-level coverage using static methods such as DFV
continues to pose significant challenges, and its usage cannot
be considered mainstream today.

In our work we enable VTRs to define coverage. VTRs
can be used to assert behavior seamlessly throughout the
complete hierarchy, from lower-level up to the system-level.
Therefore, coverage can be defined and verified throughout the
TL-hierarchy as well. We demonstrate how these VTRs and
their associated coverage can be converted into Gallina code
and how the individual coverage points can be proven. We argue
that individual coverage points of VTRs can be associated with
individual proofs. Subsequently, VTRs which are built on other
VTRs can define coverage that can be proven by reusing proofs
of their lower-level VTRs.

4) Using lower-level assertion definition and associated
coverage: Lower-level assertion definitions (such as SVA) are
very well established for lower-level logic such as finite state
machines (FSMs) and interface protocols. Usually, assertion
coverage definition is automatically derived from these lower-
level assertions and can be verified statically by SMT solvers
or during dynamic verification (e.g. simulation).

Our work demonstrates how to reuse SVA in PDVL and
discusses the conversion of the design and the lower-level
assertion definitions into Gallina code. Combined with the
compiled design behavior, the assertions can then be verified
by proving using a DFV tool like the Coq proof assistant [3].

5) Proof by symbolic simulation: In our work we focus on
DFV based on symbolic simulation, as demonstrated in [4].
Theorems can be proven that for a given initial state and a
given stimulation sequence, where state and sequence values
can have a symbolic type, all possible resulting states and state
transitions match the expected behavior.

2

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

IV. PDVL

PDVL was introduced in 2017 [5]. We therefore only give
a very brief overview. PDVL is based on SV and encapsulates
conditions and assignments. The latter are then called datap-
aths. Transactions (TRs) determine the conditions under which
individual datapaths are valid. PDVL is not limited to CPUs,
but an example of a RISC-V instruction is given in Alg. 1.

Aforementioned elements are stored in clusters. The aspect-
oriented paradigm of PDVL becomes obvious, when looking at
the hardware generation process (Alg. 2). A hardware module
hierarchy is built, and clusters are then joined into the individual
modules. The merging and signal routing must be handled by
the compiler. More information can be found in the PDVL
specification [1].

In this paper, we introduce the concept of VTRs which allows
us to define a TL-hierarchy (Fig. 2). We also show by examples,
which SV constructs are reused in PDVL for FC and assertion
definition.

V. PDVL TO GALLINA COMPILER

The tool “MRPHS” compiles PDVL code into synthesizable
SV code. MRPHS’ PDVL to Gallina compiler extension was
introduced in [6]. We therefore only give a very brief overview.

The design “DUV” must be generated by using the relevant
PDVL build commands (Alg. 2) before PDVL code is com-
piled into a Gallina representation (Alg. 3). Once the logic is
joined, all sequential and combinatorial signals of the DUV are
identified.

We mention the standard Boolean type ”bool” for signal bits
in this paper, but any user-defined type can be used instead. Alg.
3 shows that all signals are added to an inductively defined type
t item and that a dynamic list t state can be generated based
on t item members.

Only signals with a defined value are added to the t state list.
A signal can be removed from the list once its value becomes
undefined. This applies to both sequential and combinatorial
signals. The t state list therefore contains all sequential ele-
ments and combinatorial signals that are defined at a given
point of time.

Alg. 3, line 12 shows that design-specific functions are
defined, which are subsequently used in the generated Gallina
code. MRPHS also generates a set of more general functions
which, for instance, assign a given value to an item in the t state
list (e.g. f set) or extract the value of a specific item in the
t state list (e.g. f get). The generated Gallina code mentioned
so far is stored as a DUV specific library.

For each condition in the PDVL source code, a Boolean
signal is generated and added to the item list as well. The
condition body is converted into a Gallina definition.

All condition, datapath, and transaction definitions in PDVL
are compiled into Gallina code and stored as a second DUV-
specific library, which is used by the final proof scripts. Alg. 4
gives an example related to the aforementioned RISC-V ADDI
instruction. We will see in the following section, that theorems
can be proven based on the automatically generated Gallina
code mentioned so far.

Algorithm 1 PDVL: RISC-V instruction example (ADDI)
1: cl instr addi { (* cluster *)
2: c instr i addi { if (opcode i == 7’h13 (* condition *)
3: & funct3i == 3’h0) this; }
4: d addi { dp out = rs1 dato+instr[31:20]; } (* datapath *)
5: tr rv32i addi { (* transaction *)
6: unique @c instr i addi { d rs1i addr; d addi;
7: d rd dp out; d rd addr; c rf write; d pc4; } } }

Algorithm 2 PDVL: Generating a module hierarchy, joining
a cluster into a submodule and defining clock input and edge
sensitivity for registers.

1: build TB {
2: build i duv DUV; (* build hierarchy *)
3: join cl rv32i cl rv32imc; (* joining *)
4: join { tr reg { @e clk { tr rv32i addi; }}} cl rv32imc;
5: join cl rv32imc i duv; }

MRPHS generates Gallina definitions to support symbolic
simulation techniques. The definition sim update (Alg. 5, line
1) walks through the complete design and updates all possible
non-sequential signals. Assuming the DUV has only one single
clock, then the definition sim cycle (Alg. 5, line 1) simulates
a complete cycle, which includes an update of all sequential
elements, followed by an update of all non-sequential signals.
For more complex clock domain structures, the sim cycle
definition is adapted accordingly. Alg. 5, line 3 demonstrates,
how two cycles of the design can be simulated.

Algorithm 3 Gallina: Signal definition examples, the design
state list and a boolean function example

1: Inductive t item : Type :=
2: | i nil
3: | instr (l : t bus32)
4: | ...
5: | pc (l : t bus20)
6: | reg file (l : t arr32x32) .
7:
8: Inductive t state : Type :=
9: | st nil

10: | st cons (s : t item) (l : t state) .
11:
12: Definition f equal32 (a b : t bus32) : bool := ...

Algorithm 4 Gallina: Compiled condition, datapath and trans-
action definitions (ADDI example)

1: Definition c instr i addi (st : t state) : t state := ...
2: Definition d addi (st : t state) : t state := ...
3: Definition tr rv32i addi (st : t state) : t state := ...

3

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

Algorithm 5 Gallina: Helper definitions for symbolic simula-
tion

1: Definition sim update (st : t state) : t state := ...
2: Definition sim cycle (st : t state) : t state := ...
3: Definition two cycles (st : t state) : t state :=
4: sim cycle (sim cycle st).

VI. TL-HIERARCHY GUIDED COVERAGE DRIVEN DFV

A. Introducing virtual transactions

In this section we introduce virtual transactions (VTRs)
which allow us to define a TL-hierarchy and ultimately the
reuse of lower-level verification results on higher-level. VTRs
can define testbench related functionality such as sequences,
randomness, coverage points, etc.. A VTR can bundle a set of
TRs and VTRs. This generates a TL-hierarchy that can have
multiple top-level VTRs, whereas each of the top-level VTRs
groups a specific set of TRs and VTRs for a specific verification
goal. VTRs are not meant to be synthesizable unless explicitly
specified.

One of the key ideas behind PDVL is that it extends the
SV language by only a limited number of new constructs.
It is therefore intended that VTRs in PDVL reuse many of
the testbench related language constructs known from SV. We
mention some keywords by providing examples.

B. VTRs and testbench related language constructs

Fig. 2 gives an overview of the design example we use
to demonstrate our methodology. The synthesizable UART
transmit (TX) module in the DUV provides standard UART TX
capabilities. The outgoing datastream is captured by an UART
monitor. We now show how a VTR (Alg. 6) can be defined,
which creates a verification environment for these two entities.

A VTR can define time consuming behavior by using the
keyword sequence (Alg. 6, line 5). A sequence always starts
at the “init” state, can traverse a finite number of user defined
states (here “finish”) and becomes redundant when reaching the
keyword “exit” (Alg. 6, line 13). A sequence can therefore also
be considered as an FSM.

In our example (Alg. 6, line 6), a random “symbolic” value
is assigned to the byte “axi tx data” during the “init” state and
the condition “c axi trans” is set valid. The sequence then tran-
sitions to the finish state. Once the condition “c uart rx valid”
is true, it is checked whether the coverage point “cp tx rx eq”
is covered and the sequence is exited.

If the VTR “vtr tx rx transfer” is called within a VTR that
defines the clock for the registers involved, then the sequence
is clocked by the specified clock (e.g. UART clock). In this
case we are talking about a cycle-timed VTR.

A cycle-timed VTR checks signal values and condition states
in the respective cycle. It also assigns condition states and
signal values to the relevant signal at the given clock edge.

C. VTRs as instruction code generator

A VTR can call other VTRs. The calling VTR can then be
considered as an untimed VTR, which has more the character

Algorithm 6 PDVL: VTR UART TX-RX Transfer
1: cluster tb axi uart {
2: c tx rx data eq {
3: if (uart rx data == axi tx data) this; }
4: vtr tx rx transfer {
5: sequence tx rx transfer {
6: init: {
7: random axi tx data;
8: c axi trans;
9: finish; }

10: finish: {
11: @c uart rx valid {
12: cover cp tx rx eq { c rx tx data eq; }
13: exit; } } } } }

of a function written in a sequential programming language.
The called VTR starts at the “init” state of the sequence. The
called VTR finishes when the “exit” keyword is reached. At this
timepoint, the calling VTR continues processing its sequence.

The execution of the resulting VTR tree becomes time con-
suming when a VTR calls a cycle-timed VTR. Our enhanced
PDVL version supports the fork-join and other known mecha-
nisms to run multiple time-consuming sequences in parallel.

An example of an untimed VTR is an instruction gen-
erator for an UART TX driver shown in Alg. 7 called
“vtr cpu uart tx driver”. It is also outlined in Fig. 2 in the
sequencer block, indicating that it calls the CPU multiple times
to force the CPU to issue individual bus master writes.

After assigning a symbolic value to “axi tx data”, the
VTR successively calls a list of VTRs. The goal is that the
UART TX Enable Bit is set (“vtr cpu uart tx enable”) and
that the “axi tx data” value is written into the UART TX
register (“vtr cpu uart tx data”) which starts the transmission.
Finally, the CPU should constantly loop over a NOP instruction
(“vtr cpu loop nop”). The called VTRs force the CPU in the
given system to execute individual instructions, which results
in individual AXI bus-writes.

The VTR “vtr cpu uart tx data” (Alg. 7, line 10) shows
how the CPU can be forced to execute a sequence of instruc-
tions to issue the relevant AXI master data write command.

VTRs can be untimed, timed and cycle-timed. When a VTR
is called by a VTR outside an edge sensitive block, the VTR is
untimed and the VTRs interact by an calling-init-exit-continue
process. Multiple VTRs can also interact using a fork-join or
alternative mechanisms.

D. VTRs and coverage related constructs

PDVL supports the concept of SV to assign a random value
to a signal. This is the case, for example, if the payload of a
data transmission is generic. PDVL uses the keyword “random”
to indicate, that any valid value within the given range of a
signal must be considered during verification (Alg. 6, line 7
and Alg. 7, line 5). In the remainder of the paper we use the
term ”symbolic” value for such an assignment.

We also introduce a coverage definition for individual VTRs.
A coverage point is defined by the keyword “cover”, followed

4

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

Fig. 2. Transaction level hierarchy example, showing the design under verification (DUV) and transactions as well as the testbench (TB) and virtual transactions.

Algorithm 7 PDVL: CPU UART Driver Instruction Generator
1: cluster tb cpu uart driver {
2: vtr cpu uart tx driver {
3: sequence cpu uart driver {
4: init: {
5: random axi tx data;
6: vtr cpu uart tx enable;
7: vtr cpu uart tx data;
8: vtr cpu loop nop;
9: exit; } } }

10: vtr cpu uart tx enable { ... }
11: vtr cpu uart tx data {
12: sequence cpu tx data {
13: init: { instr2;
14: ... /* code executing ”lui s0, 0x80030;” */ }
15: instr2: { instr3;
16: ... /* code executing ”li a5, axi tx data;” */ }
17: instr3: {
18: ... /* code executing ”sw a5, 4(s0);” */ }
19: exit; } } }
20: vtr cpu loop nop { ... }}

by a property name and a body that, for example, checks
whether a certain condition is true at a given cycle (Alg. 6,
line 12).

E. TL-hierarchy

So far we have discussed the CPU and the UART section of
our example design. We need to mention the AXI arbiter block,
which basically converts AXI master writes to the relevant AXI
slave writes. A VTR can also be defined for an AXI master-
slave transfer, such as “”vtr axi mst slv transfer” in Fig. 2.

There are additional TRs and VTRs which connect the design
modules and testbench elements. Fig. 2 illustrates that all TRs
are part of the synthesizable design. We have also discussed

VTRs which give an abstract view of local behavior such as a
CPU sequence and a UART TX-RX data transfer.

We now broaden the perspective and introduce a VTR
which produces a system-wide sequence, shown in Fig. 2. In
our example, the top-level sequence “vtr cpu uart sequence”
forces the CPU to generate a set of instructions which enable
the UART to transmit data. The CPU then writes a symbolic
value into the UART, which is then transmitted and captured
by the UART monitor. Fig. 2 illustrates that it can be seen as
a top-level VTR covering previously mentioned VTRs so far.
We will see how our approach to use DFV will benefit from
such a TL-hierarchy.

F. VTRs and deductive formal verification
We now show how VTRs and the resulting TL-hierarchy can

be used for DFV. We improved the PDVL to Gallina compiler
(“MRPHS”, Section V) to support VTRs.

1) Proving theorems based on combined transactions:
Alg. 8 shows a simplified code of the example VTR (Alg.
6) compiled into Gallina code. The theorem lists a sym-
bolic value as a hypothesis. Coverage properties are compiled
into definitions, which check that the defined conditions are
true (“cp uart tx rx”). The sequence “vtr tx rx transfer” is
also compiled into a definition, which modifies the list of
the given design states. The compiled and provable theo-
rem “th tx rx transfer” executes the “vtr tx rx transfer” and
checks whether the property “cp uart tx rx” is covered.

2) Proving theorems based on sequences: In this sub-
section, we refer to the CPU UART driver code generator
described in Alg. 7. To prove that each of the code generation
sequences (vtr cpu uart tx enable and vtr cpu uart tx data)
initiates correct AXI master writes, individual cover properties
can be defined similar to the coverage property in Alg. 6.

Alg. 9 lists the compiled and provable theorem for the
“cpu uart driver” sequence listed in Alg. 7. After the individual
sequences have been executed, it is checked whether the
relevant properties are covered (“true”).

5

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

Algorithm 8 Gallina: Coverage theorem (simplified)
1: Theorem th tx rx transfer :
2: foreach axi tx data : t bus,
3: cp uart tx rx (
4: vtr tx rx transfer (reset st)).

Algorithm 9 Gallina: CPU UART driver sequence
1: Theorem th cpu uart driver :
2: foreach axi tx data : t bus,
3: cp cpu tx data (
4: cp cpu tx enable (
5: vtr cpu loop nop (
6: vtr cpu uart tx data (axi tx data
7: vtr cpu uart tx enable (reset st))))).

G. Reuse of proofs

The ability to define more abstract VTRs to build a TL-
hierarchy can be particularly useful when proofs of lower-level
theorems derived from lower-level TRs or VTRs can be reused.
We start with a top-level VTR.

1) Top-level VTR reuses lower level proofs: We can see
in Fig. 2 how the top-level VTR “vtr cpu uart sequence”
functionally extends over all VTRs mentioned so far. We want
to prove that the symbolic value which is programmed by the
CPU is transmitted from the UART TX module to the UART
monitor. This can be asserted within a VTR similar to the
“cp uart tx rx” cover property in Alg. 6, line 12. The top-level
VTR “vtr cpu uart sequence” needs to call the same sequence
as defined in Alg. 7, lines 6-8.

After compiling the VTR “vtr cpu uart sequence” to the
relevant theorem, the proof can reuse proven theorems of lower-
level theorems such as the one of “th tx rx transfer” etc..

2) Mid-level VTR reuses lower level proofs: When proving
mid-level theorems such as “th tx rx transfer”, reusing lower-
level theorems (not previously mentioned) is also advantageous.

In the given UART example, it can be argued that a finite
state machine (FSM) controlling the UART TX has its coun-
terpart in the FSM of the UART receiver (RX) in the testbench
monitor. For simplicity, let’s assume that the transmission is
based on a synchronous single-bit protocol.

The TR in the TX-FSM that defines the transmission of a
single bit is combined with the TR in the RX-FSM to form
a new VTR that defines the entire transmission process of a
single bit value. This abstract VTR in PDVL is compiled into
Gallina code which can be used for proving. A theorem is
proven stating that the transmitted data bit value is correct.

The same mechanism is applied for the transfer of a byte
and a full packet, while using the previously formally verified
theorem of transmitting a bit (or byte respectively).

H. SVA in PDVL and intermediate representation

The work in [7] shows how SVAs can be converted into
synthesizable code by extracting FSMs, datapath and checker
logic. We follow these guidelines and generate an IR that is
in-line with PDVL representations. Local SVA variables are

converted into PDVL items. The Boolean layer is compiled
into condition and datapath logic as defined by PDVL. SVA
sequences and properties are converted into VTR sequences
as defined in this paper. Here multiple VTR sequences can
result from this conversion process and the possibility to use
fork-join methods becomes relevant. SVA local variables can
also be compiled into registers within the IR. Assumptions and
coverage goals are converted into coverage properties.

At the current state, our work does not support the full
range of SVAs. There are limitations in aspects like liveliness,
overlapping transactions, etc.. However, it is not our goal to
fully support this specific methodology. Let’s assume there are
SVAs in a sender and a receiver of an interface. We argue that
our approach of a TL-hierarchy covers both sides with VTRs
spanning over sender and receiver functionality, so that local
SVAs become redundant.

VII. RELATED WORK

BSV: Bluespec SystemVerilog (BSV) [8] is a high-level
hardware description language of guarded atomic actions. The
BSV concept is based on BSV rules and a term rewriting
system, whereas each rule can be viewed as a declarative
assertion expressing a potential atomic state transition. In [9] it
is discussed, how the modular concept of BSV generates new
challenges for predicting the compiler output. The sequential
behavior of the hardware defined by PDVL is exact and the
cycle behavior of the compiler’s SV and Gallina code is
therefore predictable since no scheduling is involved.

KAMI: According to [10], KAMI is a framework to support
implementing, specifying, formally verifying, and compiling
hardware designs based on BSV and the Coq theorem prover.
It emphasizes modular verification of digital hardware. In
contrast, using PDVL provides a TL design paradigm and a TL
formal verification paradigm. TRs can span multiple modules,
creating a TL-hierarchy that can range from low-level cycle-
accurate TRs to approximately-timed or untimed VTRs. The
concept of a module becomes only relevant when the final SV
code is generated.

Rules rewriting: The work in [11] describes the proving and
disproving of assertion rewrite rules with automated theorem
provers. The work is based on the assertion language PSL and
concentrates on rule rewriting. We outlined our flow to convert
SVA into an IR of FSMs, datapath and checker logic, which is
then compiled into Gallina code and used for DFV. We do not
use rewriting as such, but benefit greatly from reusing proofs
through applying proven theorems.

RTL to TLM: The main intent of the work in [12] is to
automatically build a dynamic ABV environment for a TLM
model, with no restrictions on the abstraction level, by starting
from a set of properties initially defined for a corresponding
RTL implementation. First, cycle-accurate RTL properties are
automatically rewritten into a set of properties suited to be
checked on an event-based TLM model. Secondly, an approach
is defined to synthesize TLM properties into checkers to be
adopted for dynamic ABV of the TLM model. In our work,
we use a TL language to define TL assertions throughout a
user defined TL-hierarchy.

6

To appear in the proc. of the 35th Intern. IEEE Workshop on Rapid System Prototyping, 3rd Oct. 2024, Raleigh, NC, USA

TL assertion language: In [13] an assertion specification
language is presented which is based on formal definitions that
allows the specification of TL properties and their execution in
simulation. It derives the language from known ABV languages
and extends these by the required TL functionality. It also
explains how simulation traces of finite length can be checked
against properties. Our work, on the other hand, is optimized for
DFV. Nevertheless, the work in [13] was a great inspiration for
our work, especially because it is based on industry experience.

VIII. RESULTS

The SoC design was written in PDVL. The number of
synthesizable TRs and VTRs are listed in Tab I for each
individual core and the complete SoC. MRPHS was used to
compile the design into synthesizable SV code. The design
and the VTRs are compiled into Gallina code. The compilation
process of the SoC is completed within less than 10 seconds
for each of the two outputs. For compilation and runtime
evaluation, we use an i7, 2.6GHz CPU.

The number of resulting theorems is listed in Tab. I. It also
shows the complete consecutive execution time (CCET) of all
proofs on a single thread for each individual core and the entire
SoC. We introduce a maximal incremental runtime (MIRT),
which is the worst case runtime to prove all relevant proofs
based on an incremental change in the source code.

We developed a testbench in SV with the same coverage
we achieve by the DFV flow. We use Verilator to run the
regression suite. Tab I lists the simulation runtime (SRT) for
each individual core and the entire SoC.

The execution time of a simulation based regression suite
(SRT) is faster than the complete execution time of the DFV
flow (CCET). This is mainly due to Coq theorem prover
runtime issues. Nevertheless, DFV-based tests can be run in
parallel to reduce this disadvantage, just like simulation-based
regression suites. Alternatively, a faster theorem prover might
eventually be used as our DFV is not limited to the Coq theorem
prover.

The runtime of the DFV flow when only an incremental
update needs to be verified (MIRT), looks promising compared
to the individual simulation runtime (SRT) of individual core
related tests.

We see one of the most important advantages at the system
level. While it is becoming increasingly difficult to write
efficient system-level tests in simulation, we have found that
it is very inviting to write top-level tests for our DFV flow.
The possibility to reuse lower level proof is particularly helpful
when solving software driver related issues. In this respect, we
see a clear advantage of our demonstrated DFV flow over a
simulation-based verification approach.

IX. CONCLUSION

We have demonstrated the use of deductive formal verifi-
cation (DFV) to prove functional coverage and assertions as
an alternative to simulation-based verification. One key contri-
bution of DFV is the ability to symbolically verify complete
coverage areas in a deductive manner. In order to benefit from
verification reuse, we introduce a transaction level hierarchy,

which enables the definition and verification of functional
coverage and assertions from lower-level to system-level.

This hierarchical verification approach allows us to focus on
level specific verification challenges and enables incremental
updates when behavior only changes locally. It fills the gap that
exists today between low-level SVA-based verification and the
state-of-the-art coverage-based verification defined in UVM and
PSS. At the same time, lower-level SW routines (e.g. peripheral
drivers) become an integral part of the system verification at
the same time.

TABLE I
RESULTS FOR REFERENCE SOC DESIGN.

TR VTR Theorems Coq Coq Verilator
CCET MIRT SRT
[sec] [sec] [sec]

RV32IMC 107 144 219 52.4 5.01 27.8
SDRAM 93 160 197 55.9 3.49 27.0
Ethernet 72 89 106 18.3 2.48 14.0

AES 64 76 111 13.7 2.92 8.03
SoC 445 813 1048 186 6.26 125

REFERENCES

[1] T. Strauch. PDVL Specification v0.1. [Online]. Available:
https://github.com/cloudxcc/PDVL

[2] Gallina Development Team. The Gallina specification language. [On-
line]. Available: https://coq.github.io/doc/v8.9/refman/language/gallina-
specification-language.html

[3] Coq Development Team. The coq proof assistant. [Online]. Available:
http://coq.inria.fr/

[4] Y. Morihiro, and T. Toneda, “Formal verification of Data-path Circuits
Based on Symbolic Simulation”, Proc. of the Ninth Asian Test Sympo-
sium, 2000, 6th Dec, Taipei, Taiwan, pp. 1-8.

[5] T. Strauch, ”An Aspect and Transaction Oriented Programming, Design
and Verification Language”, IEEE Euromicro DSD 2017, 30 Aug. - 1
Sep., Vienna, Austria, pp. 30 - 39.

[6] T. Strauch, ”Deductive Formal Verification of Synthesizable, Transaction-
level Hardware Designs Using Coq”, Design, Automation & Test in
Europe Conference & Exhibition (DATE), 25-27 March 2024, Valencia,
Spain, pp. 1-6.

[7] J. Long, and A. Seawright, ”Synthesizing SVA Local Variables for Formal
Verification”, 44th ACM/IEEE Design Automation Conf (DAC), 4-8 June
2007, San Diego, CA, USA. pp. 75-80.

[8] R. Nikhil, “Bluespec SystemVerilog: Efficient, correct RTL from high
level specifications,” Proc. 2nd ACM and IEEE Int. Conf. Formal Meth-
ods and Models for Co-Design, MEMOCODE’04, 23-25 June 2004, San
Diego, CA, USA, pp. 69–70.

[9] M. Vijayaraghavan, N. Dave, and Arvind, “Modular Compilation of
Guarded Atomic Actions”, ACM/IEEE Intern. Conf. on Formal Meth-
ods and Models for Codesign, MEMOCODE 2013, 18-20 Oct. 2013,
Portland, OR, USA, pp. 177-188.

[10] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind.
“Kami: A Platform for High-Level Parametric Hardware Specification
and Its Modular Verification”, Proceedings of the ACM on Programming
Languages, Volume 1, Issue ICFP, Article No.: 24, pp 1–30.

[11] K. Morin-Allory, M. Boulé, D. Borrione, and Zeljko Zilic, ”Proving and
Disproving Assertion Rewrite Rules with Automated Theorem Provers”,
IEEE Intern. High Level Design Validation and Test Workshop, 19-21
November 2008, Incline Village, NV, USA, pp. 56-63.

[12] Nicola Bombieri, Riccardo Filippozzi, Graziano Pravadelli and Francesco
Stefanni, ”RTL property abstraction for TLM assertion-based verifica-
tion”, Design, Automation & Test in Europe Conference & Exhibition
(DATE), 9-13 March 2015, Grenoble, France, pp. 85-90.

[13] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, ”Specification
Language for Transaction Level Assertions”, IEEE Intern. High Level
Design Validation and Test Workshop, 8-10 November 2006, Monterey,
CA, USA, pp. 77-84.

7

